Abstract

We explore the hypothesis that the relative size distribution of earthquakes, or b‐value, systematically depends on the style‐of‐faulting of seismotectonic zones. Because the b‐value has been shown to be inversely proportional to stress, we expect to find b(thrust) < b(strike‐slip) < b(normal). We test this expectation for the case of Italy. We first of all build a seismotectonic zonation model, consisting of 10 distinct tectonic zones. The faulting style of each zone is then characterized by the summed moment tensor of first‐motion and full‐waveform based focal mechanism. We calculate the b‐value for each zone: the lowest values are obtained for reverse zones (0.75–0.81), highest for the normal (1.09), followed by the strike‐slips (0.9–0.92). Our results suggest that b‐values, which are a critical parameter in all seismic hazard assessments, should be set according to the local faulting regimes. In addition, seismotectonic zonation models should take b‐value variations as one input.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.