Abstract

Influence of technical and chemical characteristics of industrial wood milling tools on its wear was analysed. Four tools of different manufacturers were subjected to the research. Lithuanian oak wood was chosen for the research as a reference material. Behaviour of cutting tools was assessed on the adopted industrial thickness planer SR3-6 with cutting speed of 31 m/s. Wear performance was evaluated on milling the specimens until 3200 m of true cutting length. Summarising achieved results, the following can be stated: chemical composition of tool and heat treatment schedule has great impact on the tool edge wear. The highest wear resistance was reached on testing tools made of CT01M-LA2; tools made of high-alloyed tool steel 8X6HΦT have presented the highest cutting edge radius and edge recession in each type of test as compared with tools made of high-speed tool steels Z80WCV18-04-01/18-0-1 and HS18-0-1, respectively. All these tools are suitable for oak wood processing. The high-alloyed tool steel shows similar wear performance as high-speed tool steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call