Abstract

Abstract The continually changing atmospheric conditions over densely populated coastal urban regions make it challenging to produce models that accurately capture the complex interactions of anthropogenic and environmental emissions, chemical reactions, and unique meteorological processes, such as sea- and land-breeze circulations. The purpose of this study is to determine and identify the influence of synoptic-scale wind patterns on the development of local-scale sea-breeze circulations and air quality over the New York City (NYC), New York, metropolitan area. This study utilizes column-integrated nitrogen dioxide observations made during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign, ground-level ozone observations, the HRRR numerical weather prediction model, and trajectory model simulations using the NOAA HYSPLIT model. A cluster analysis within the HYSPLIT modeling system was performed to determine that there were six unique synoptic-scale transport pathways for NYC. Stagnant conditions or weak transport out of the northwest resulted in the worst air quality for NYC. Weak synoptic-scale forcings associated with these conditions allowed for local-scale sea-breeze circulations to develop, resulting in air pollution being able to recirculate and mix with freshly emitted pollutants. Significance Statement The purpose of this work is to understand how synoptic-scale wind patterns influence air quality and sea-breeze circulations in the New York City, New York, metropolitan area. This work shows that clean air can be imported into the region from rural New England and over the Atlantic Ocean, whereas polluted air can be transported into the region from the northwest and southwest. This work also shows the importance of the strength in synoptic-scale forcings in the development of sea-breeze circulations. Weak synoptic-scale winds allow for strong sea-breeze circulations to develop over all coastlines in the New York City region, resulting in air pollutants recirculating and mixing with freshly emitted air pollution and contributing to poor air quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.