Abstract

As different implant abutments are introduced to obtain a sufficient soft tissue barrier, the aim of this study was to determine the effect of three different surface modifications of densely sintered high-purity aluminium oxide on morphology, attachment and proliferation of human gingival fibroblasts. Fibroblasts were cultured on pressed aluminium oxide, milled, and then sintered to full density (1), on pressed, densely sintered (2), and on pressed, densely sintered and then polished surfaces (3). The different surfaces were analyzed using a confocal laser scanner, an atomic force microscope and a scanning electron microscope. The cell profile areas were measured using a semiautomatic interactive image analyzer and the figures were expressed as percent of attachment. The polished specimens had the smoothest surfaces and the roughest were the milled surfaces in terms of height deviation. No difference was found in the spacing between the peaks on the polished surfaces compared to the milled surfaces. Fibroblasts on the milled ceramic appeared to follow the direction of the fine irregularities on the surface. The analyses showed the polished surfaces had significantly higher percentages of initial cell attachment than the other surfaces ( P<0.05). After 3 days of cell culture, significantly more cells were attached to the milled and sintered surfaces than to the polished one, possibly indicating higher proliferation capacity on those types of surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call