Abstract

The present paper develops a size-dependent Kirchhoff microplate model with surface effects by using simplified strain gradient elasticity theory and surface elasticity theory. This new model is able to capture size-dependent behaviors and surface effects. The most noticeable difference of the proposed model from the existing plate models about microplates is that not only strain gradient and surface stress are taken into account, but also the surface-induced internal residual stresses are considered. Based on whether the plates having surface-induced internal residual stress or not, their governing equations have distinct differences. An extended Kantorovich method is employed to provide approximate closed-form solution for the rectangular microplate with simply supported boundary conditions. For the microplate with biaxial initial residual surface stress, the numerical results reflect that when the simply supported microplates do not have surface-induced internal residual stresses, internal length scale and biaxial surface residual stress have significant influence on the static bending of the microplates. However, when the simply supported microplates have nonzero surface-induced internal residual stresses, the effects of internal length scale and biaxial surface residual stress become very weak. It indicates that the effect of surface-induced internal residual stresses can counteract most of the effects of internal length scale and surface residual stress. This work provides a more general model for the analysis of microplate problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.