Abstract

Analyses are given of the mechanism of friction and abrasive wear and of the effect of surface roughness on them. Theoretical expressions are derived for ploughing, adhesion and the total friction coefficient of hard conical asperities ploughing a soft metal surface, with the assumption that the asperities of the hard metal are cones with randomly distributed slopes, the mean value of which varies with surface roughness. Simple expressions for the abrasive wear rate and the mean wear particle size are also derived on the basis of a ploughing mechanism of the hard conical asperities on the soft metal surface. A comparison of calculated values based on these theories with experimental data of single-pass wear tests for various soft metals such as copper, cadmium, lead and zinc sliding on low carbon steel plates shows good agreement. The effects of surface roughness on the tangential forces under unlubricated and lubricated conditions as well as the mean wear particle size are theoretically discussed and the theoretical results are compared with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.