Abstract

AbstractA combination of uniaxial compression tests and Strip Model and Finite Element analyses of laminates artificially delaminated to create circular (±θ) sublaminates is used to assess the influence of fibre angle on the compressive strength of composite laminates.Sublaminates with 0° < θ < 40° are found to fail by sublaminate-buckling-driven delamination propagation and provide poor tolerance of delamination. This is a consequence of their relatively high axial stiffnesses, low sublaminate buckling strains, Poisson’s ratio induced compressive transverse strains and extension-twist coupling which produces unexpected sublaminate buckling mode shapes. Sublaminates with 40° < θ < 60° are most tolerant to delamination; axial and transverse stiffnesses are minimal, formation of sublaminate buckles is resisted, high laminate buckling strains reduce interaction between laminate and sublaminate buckling mode shapes and extension-twist coupling is minimal. Sublaminates with 60° < θ < 90° are shown to produce varied tolerance of delamination. Sublaminate buckling is generally prevented owing to transverse tensile strains induced by mismatches between laminate and sublaminate Poisson’s ratios but may occur in laminates with low Poisson’s ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.