Abstract

Nickel-titanium (NiTi) shape memory alloys have been widely used as implant materials, due to their superior shape memory properties and similar mechanical behavior to bone tissue. The presence of nickel on the surface of nickel-titanium alloy and release of this ion in the body environment will result in some allergic reactions. In current study, we used shot pinning process to produce nanocrystalline nickel-titanium alloy with increased corrosion resistance. Field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) analysis, and atomic force microscopy were employed to investigate the surface features of samples. The quantitative chemical analysis of NiTi and modified NiTi samples was conducted by energy dispersive x-ray method. The electrochemical behavior of NiTi alloy was evaluated using the potentiodynamic polarization scan and electrochemical impedance spectroscopy tests in Ringer solution after and prior to the shot pining process. The result of XRD analysis of modified samples showed an average crystalline size of 23 nm. Moreover, FE-SEM confirmed the development of a nanostructured alloy induced by shot pinning process. Modification of NiTi alloy by shot-peening process resulted in corrosion resistance improvement and decrease in the corrosion rate, which consequently led to less release rate of the toxic nickel ions in the corrosive environment, compared to the non-modified samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call