Abstract

Unsized glass fibers and planar glass substrates were subjected to low temperature plasma or wet-chemical process to modify the fiber or substrate surface and thus influence the interphase properties of the glass/polyester system. Plasma-polymerized thin films (interlayers) of organosilicon monomers (hexamethyldisiloxane and vinyltriethoxysilane) were deposited in an RF helical coupling plasma system on the glass surface. Commercial silane coupling agent (vinyltriethoxysilane) was coated onto an unmodified glass surface from an aqueous solution. Bonding at the glass/interlayer interface was analyzed by employing a micro-scratch tester together with an optical polarizing microscope for the planar samples. The results revealed that the adhesion bonding could be controlled by plasma process parameters. Scanning electron and atomic force microscopies enabled characterization of the film surface morphology. Chemical composition and chemical structure of prepared interlayers were characterized using X-ray photoelectron and infrared spectroscopies. Microcomposites (macrocomposites) were tested to evaluate the interfacial shear strength (short-beam strength) of the glass fiber/polyester interphase using the microbond test (short-beam shear). Our study indicated that the most efficient interphase could be prepared by plasma polymerization or wet-chemical process using the vinyltriethoxysilane monomer. The short-beam strength was 110% higher than that for untreated fibers in both cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.