Abstract

An experiment is described in which a mica surface is driven towards a mercury drop immersed in aqueous electrolyte. Under appropriate conditions, hydrodynamic pressure in the aqueous film creates a classical dimple in the mercury drop. The use of optical interferometry and video recording to monitor the shape of the drop and the thickness of the aqueous film with sub-nanometre resolution yields a high density of precise data showing the formation and evolution of the dimple as the film drains. Variation of electrical potential applied to the mercury phase allows control of the surface forces acting between the drop and the mica surface, so that the effect of surface forces on the film drainage process is highlighted. It is found that the film thickness at the centre of the dimple and the lateral extent of the dimple are not significantly affected by surface forces. On the other hand, the minimum film thickness at the edge of the dimple is sensitive even to weak surface forces. Since this minimum film thickness is a major determinant of the film drainage rate, it is shown that surface forces have an important effect on the overall drainage process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.