Abstract

Rate equations have been developed which describe the concentration dependence for ion-translocation across charged membranes for those cases in which the translocation process can be considered to be formally equivalent with an enzymic process of a Michaelis-Menten type. We have limited ourselves to those cases in which the ion-translocational step through the membrane is electroneutral. In addition it is assumed that the sites on the membrane involved in the ion-translocation process can not move through the membrane when these sites are not occupied by ions. It is shown that in general deviations from Michaelis-Menten kinetics may be expected. In case of monovalent ion-translocation across oppositely charged membranes apparent negative homotrope cooperative effects may occur, whereas for ion-translocation across equally charged membranes apparent positive homotrope cooperative effects may be found. When the bulk aqueous phase also contains polyvalent ions both types of effects may occur both in the case of ion-translocation across oppositely charged membranes as well as with ion-translocation across a membrane of which the sign of the surface charge is the same as that of the ion translocated. Under limited conditions, also apparent single Michaelis-Menten kinetics may be observed. In these cases, however, the apparent K m generally is no linear function of the concentration of a competing ion. It is shown that even when an ion does not bind to the translocation sites the K m is affected by increasing concentrations of this ion, a phenomenon which is not expected when the membrane is not charged. The effects of divalent ions, added to the bulk aqueous phase as 1-1-electrolytes, upon the K m are discussed in connection with in literature reported effects of Ca ++ upon the rate of uptake of several monovalent ions into plant cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.