Abstract

The interaction of recombinant cellulose-binding domains (CBDs) of endoglucanase Cel9B from Paenibacillus barcinonensis with different cotton cellulose allomorphs (I, II and III) has been investigated, in order to bring new insights regarding the CBD adsorption and desorption processes. The highest CBD adsorption capacity was recorded for cellulose I, confirming the affinity of proteins to the most crystalline substrate. The weakening and splitting of the hydrogen bonds within cellulose structure after CBD adsorption, as well as a decrease of the crystallinity degree were identified by ATR-FTIR spectroscopy and XRD. The CBD's adsorption kinetic was shown to be rendered by properties as, specific surface area and porosity, being confirmed by dynamic vapor sorption measurements. An important influence of temperature (25, 37 and 50°C) and/or pH medium (4, 5.5, 7 and 10) on the CBD desorption capacity was confirmed, being related to the hydrophobic interactions formed between the CBD and the cellulose allomorphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.