Abstract

We report the influence of electrolyte composition and concentration on the stochastic amperometric detection of individual silver nanoparticles at microelectrode arrays and show that the sensor response at certain electrode potentials is dependent on both the conductivity of the electrolyte and the concentration of chloride ions. We further demonstrate that the chloride concentration in solution heavily influences the characteristic current spike shape of recorded nanoparticle impacts: While typically too short to be resolved in the measured current, the spike widths are significantly broadened at low chloride concentrations below 10 mm and range into the millisecond regime. The analysis of more than 25 000 spikes reveals that this effect can be explained by the diffusive mass transport of chloride ions to the nanoparticle, which limits the oxidation rate of individual silver nanoparticles to silver chloride at the chosen electrode potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.