Abstract

Sulfur-resistant Mo-based catalysts have become promising for the one-step synthesis of methanethiol (CH3SH) from CO/H2/H2S, but the low reactant conversion and poor product selectivity have constrained its development. Herein, we synthesized K-MoS2/Al2O3 and K-Mo2C/Al2O3 catalysts via the sulfurization and carbonization of K-Mo-based catalysts in the oxidized state, respectively. During the synthesis of CH3SH, both K-Mo2C/Al2O3 and K-MoS2/Al2O3 showed excellent catalytic performance, and the activity of the former is superior to that of the latter. The effect of different treatments on the catalytic performance of Mo-based catalysts was investigated by XRD, BET, Raman spectroscopy, H2-TPR, and reactants-TPD characterization. The results showed that the sulfide-treated sample showed stronger metal-support interactions and contributed to the formation of K2S, which exposed more active sites and stabilized the formation of C-S bonds. Carbonized samples enhanced the activation of H2, which promoted the hydrogenation of the intermediate species of carbonyl sulfide (COS) and thus improved the selectivity of CH3SH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call