Abstract

AbstractEPR, UV/Vis and FTIR spectroscopy as well as thermal analysis (TA/MS) were applied to study the influence of sulfate species present in the anatase support on the specific nature of VOx species in supported VOx/TiO2 catalysts. Those sulfate species modify the local structure of the supported vanadyl species and lead to the formation of two types of VO2+ sites instead of only one type being formed on sulfate‐free anatase. EPR and FTIR spectroscopic measurements revealed that a part of the VO2+ species are directly bound to the surface sulfate species. By TA/MS it was found that SO2 is released at lower temperature from VOx/TiO2 in comparison to the vanadium‐free support. The direct bonding between sulfate and VOx species stabilizes the latter on the surface of VOx/TiO2 resulting in three effects: 1) a higher V site dispersion in comparison to sulfate‐free TiO2, 2) a better resistance of surface vanadyls against diffusion into the bulk of the support and 3) a much faster reoxidation of reduced V sites than observed on sulfate‐free TiO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call