Abstract

The passage of subtropical cold fronts through central Australia produces the only significant mesoscale meteorological features in the region. The interaction of these cold fronts with the surface energy balance strongly affects the local weather and climate. The surface energy balance was measured at a semi-arid site in Alice Springs, central Australia, to determine how it was influenced by the passage of subtropical cold fronts. Both Bowen ratio and eddy correlation methods were used. The daytime energy balance of the site showed high net radiation that was partitioned into 75% sensible heat flux and 25% soil heat flux with little or no latent heat flux. At night there was a large net radiative loss that was balanced primarily by a loss of heat from the soil. The cold fronts predominately passed through Alice Springs at night and showed a strong surface signature. The fronts brought moister air resulting in higher water vapour pressures during their passage. The nocturnal boundary layer was often disturbed as the front passed, resulting in warm, moist air being mixed down toward the land surface. Mixing decreased the soil heat flux and increased latent heat fluxes toward the surface. Moisture that accumulated at the surface at these times was often evaporated after a return to drier conditions. During the daytime, surface signatures in soil and sensible heat fluxes were less distinct due to the strong convective mixing. Latent heat fluxes followed a similar trend to the nocturnal case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.