Abstract

To explore the effect of physical aging on environmental stress cracking (ESC) behavior of polycarbonate (PC), sub-Tg annealing was utilized as a method for accelerated aging. Injection molded samples were annealed at 130 °C for different time varying up to 96 h. A three point bending apparatus was used to evaluate critical stress for crazing and to record the variation of stress with immersion time at constant strain. The ESC results indicated that the critical stress for crazing initiation of PC in ethanol is increased by sub-Tg annealing. However, the resistance of annealed PC to ESC with immersion time during the stress relaxation test depends on the level of initial stress. When a relatively low initial stress was used, a short time (24 h) of sub-Tg annealing reduced the stress relaxation rate and decreased the number of cracks on the surface of PC. However, under higher initial stress, the stress relaxation rate of PC had a slight change only when the annealing time was prolonged about threefold (72 h). This can be explained by the formation of cohesional entanglement sites during the sub-Tg annealing process, which was demonstrated by the thermal and dynamic mechanical tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.