Abstract
ABSTRACT Within the ΛCDM cosmology, dark matter haloes are composed of both a smooth component and a population of smaller gravitationally bound subhaloes. These components are often treated as a single halo when properties, such as density profiles, are extracted from simulations. Recent work has shown that density profiles change substantially when subhalo mass is excluded. In this paper, we expand on this result by analysing three specific host halo properties – concentration (cNFW), spin (λB), and shape (c/a) – when calculated only from the smooth component of the halo. This analysis is performed on both Milky Way-mass haloes and cluster-mass haloes in high-resolution zoom-in N-body simulations. We find that when subhaloes are excluded, the median value of (1) cNFW is enhanced by $\approx 30\pm 11$ and $\approx 77\pm 8.1~{{\ \rm per\ cent}}$ for Milky Way-mass ($10^{12.1}\, \text{M}_\odot$) and cluster-mass ($10^{14.8}\, \text{M}_\odot$) haloes, respectively, (2) λB is reduced for Milky Way-mass by $\approx 11\pm 4.9~{{\ \rm per\ cent}}$ and cluster-mass haloes by $\approx 27\pm 3.5~{{\ \rm per\ cent}}$. Additionally, with the removal of subhaloes, cluster-mass haloes tend to become more spherical as the ratio of minor-to-major axis, c/a, increases by $\approx 11\pm 3.6~{{\ \rm per\ cent}}$, whereas Milky Way-mass haloes remain approximately the same shape with c/a changed by $\approx 1.0\pm 5.8~{{\ \rm per\ cent}}$. Fractional changes of each of these properties depend primarily on the amount of mass in subhaloes and, to a lesser extent, mass accretion history. Our findings demonstrate that the properties of the smooth components of dark matter haloes are biased relative to the total halo mass.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.