Abstract
It has been demonstrated earlier that significant adhesion enhancement to chemically inert polyolefins can be attained through surface grafted connector molecules reactive with oxidized substrate surface. The effectiveness of adhesion improvement through such tethered interfaces was shown to depend on the mode of interaction with the adjacent medium: interpenetration or chemical reaction, as well as surface density and length of grafted molecules. We have frequently observed that some systems, such as in painted products, fail through the delamination of the coating from the substrate surface at the stress levels well below the anticipated load-bearing capacity of the tethered interface. Two interim hypotheses have been formulated to explain the observed phenomenon: (i) The chain scission in surface oxidized polyolefins takes place not only in the uppermost polymer surface, but may propagate into the sub-surface region, thus creating a weak boundary layer which fails cohesively through its bulk, (ii) In order to increase the load-bearing capacity of the interphase, the sub-surface region of the substrate needs to be reinforced by short-chain molecules penetrating into and subsequently providing effective crosslinks between individual fragments of excessively oxidized and hence, weaker sub-surface part of the interphase. In this paper we verify the above hypotheses. The oxidized sub-surface layer reinforced by polyethyleneimine becomes an integral part of the effective interphase in addition to the tethered interface and the interpenetrated network of connector molecules and the paint.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.