Abstract

It was found that 3,3′-, 2,3′- and 2,2′-zinc(II) bis(dipyrromethenate)s ([Zn2L2]) form stable supramolecular complexes with aromatic and aliphatic amines (X - pyridine (Py), N,N-dimethylmethanamide (DMF), diethylamine (DEA) and triethylamine (TEA)) of the composition [Zn2L2(X)n]. Composition, stability and spectral-luminescent properties of the [Zn2L2(X)n] crystal solvates were studied by means of FTIR, PXRD, thermal, mass spectral, absorption, and fluorescence analyses. Spectroscopic studies showed that the quantum yield (φ) of [Zn2L2(Х)n] in cyclohexane is much lower (to ∼ 1.4–4.0 times) than φ for the [Zn2L2]. Crystal solvates are stable up to a temperature ∼367.35–427.55 K. It is demonstrated, that the high interactions energies (ZnN) in [Zn2L2(X)n] supramolecular complexes are the main cause of the fluorescence quenching of [Zn2L2] luminophores in the presence of electron-donor molecules. The obtained results are of interest for the development on the basis of [Zn2L2] of a new fluorescent sensors of the electron donor molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.