Abstract

Aquatic macrophytes produce considerable structural variation within the littoral zone and as a result the vegetation provides refuge to prey communities by hindering predator foraging activities. The behavior of planktivorous fish Pseudorasbora parva (Cyprinidae) and their zooplankton prey Daphnia pulex were quantified in a series of laboratory experiments with artificial vegetation at densities of 0, 350, 700, 1400, 2100 and 2800 stems m−2. Swimming speeds and foraging rates of the fish were recorded at different prey densities for all stem densities. The foraging efficiency of P. parva decreased significantly with increasing habitat complexity. This decline in feeding efficiency was related to two factors: submerged vegetation impeded swimming behavior and obstructed sight while foraging. This study separated the effects of swimming speed variation and of visual impairment, both due to stems, that led to reduced prey–predator encounters and examined how the reduction of the visual field volume may be predicted using a random encounter model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.