Abstract

How, when and where the first stars formed are fundamental questions regarding the epoch of Cosmic Dawn. A second order effect in the fluid equations was recently found to make a significant contribution: an offset velocity between gas and dark matter, the so-called streaming velocity. Previous simulations of a limited number of low-mass dark matter haloes suggest that this streaming velocity can delay the formation of the first stars and decrease halo gas fractions and the halo mass function in the low mass regime. However, a systematic exploration of its effects in a large sample of haloes has been lacking until now. In this paper, we present results from a set of cosmological simulations of regions of the Universe with different streaming velocities performed with the moving mesh code AREPO. Our simulations have very high mass resolution, enabling us to accurately resolve minihaloes as small as $10^5 \: {\rm M_{\odot}}$. We show that in the absence of streaming, the least massive halo that contains cold gas has a mass $M_{\rm halo, min} = 5 \times 10^{5} \: {\rm M_{\odot}}$, but that cooling only becomes efficient in a majority of haloes for halo masses greater than $M_{\rm halo,50\%} = 1.6 \times 10^6 \: {\rm M_{\odot}}$. In regions with non-zero streaming velocities, $M_{\rm halo, min}$ and $M_{\rm halo,50\%}$ both increase significantly, by around a factor of a few for each one sigma increase in the value of the local streaming velocity. As a result, in regions with streaming velocities $v_\mathrm{stream} \ge 3\,\sigma_\mathrm{rms}$, cooling of gas in minihaloes is completely suppressed, implying that the first stars in these regions form within atomic cooling haloes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.