Abstract
A moving static pressure distribution is commonly used to simulate a travelling ship. However, the ship movement changes the fluid velocity around the hull, inducing pressures on the hull surface that are no longer equal to the static pressure. Therefore, we introduce a dynamic pressure correction strategy, which can accurately simulate the impact of the ship movement on the hull-surface pressure and preserve the desired hull shape under both stationary and transient conditions. The strategy is applied to a high-order spectral model and used to investigate ship-induced waves and wave resistance over a both flat and variable topography. We explore various parameters in our study, including the average water depth to ship draft ratio ( $h_0/d$ ), the channel width to ship width ratio ( $W/B$ ), the Froude number ( $Fr_0=U/\sqrt {gh_0}$ ) and variations in bathymetric slope. Compared with experiments on a flat bottom, the numerical results with dynamic correction show better accuracy in the simulation of ship-induced waves and wave resistance than those obtained using a static pressure distribution. The correlation coefficient for wake waves between the numerical and experimental results is improved by approximately 0.25 with the dynamic correction strategy. The amplitude and wavelength of ship-induced mini-tsunamis over a variable topography are found to be reduced when employing a dynamic correction compared with a static pressure distribution, and this effect becomes more pronounced with higher Froude number. The static pressure approach is shown to allow large deformations of the desired hull shape and changes in ship volume which are responsible for the different wave patterns from the two approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.