Abstract

To reduce the usage of grinding fluid, nanofluid has recently been applied to grinding process with minimum quantity lubrication (MQL) technique. In this study, surface grinding of hardened AISI 52100 steel under different spraying parameters was carried out. Grinding performance was investigated and compared in terms of grinding forces, surface roughness, and grinding temperature. Experimental results show that the MQL nozzle spraying direction has important effects on the application of the nanofluid mist, and then on the lubrication and cooling of the grinding zone. It is found that an optimal grinding performance can be obtained when the nozzle is positioned angularly toward the grinding wheel. Furthermore, it is shown that air pressure and spraying distance are also critical in order to enhance the nanofluid mist to be penetrated into the grinding zone. Grinding forces, surface roughness, and grinding temperature are decreased with the increase of air pressure, and grinding performance in shorter spraying distance is better than that in longer spraying distance. The influence mechanism of the spraying parameters on the grinding performance was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.