Abstract

A chemical reduction method for preparing colloidal copper nanoparticles in water and ethylene glycol (EG) is reported. The obtained copper nanoparticles were characterized by powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-visible spectrophotometry (UV-vis). Surface plasmon resonance peaks immediately after the synthesis appeared at 579 and 551 nm for the colloidal copper in water and EG, respectively. The stability of colloidal copper in EG was longer than that in water. The color of solution in water changed from light-red to black and the nanoparticles mostly precipitated after 22 days, which is attributed to the oxidation of copper nanoparticles in copper oxide (I), as was confirmed by optical absorption measurements. In EG, copper nanoparticles were red and stable even after 2 months. Ascorbic acid plays a role as antioxidant for colloidal copper, due to its ability to scavenge free radicals and reactive oxygen molecules. Polyvinyl pyrrolidone works both as size controller and polymeric capping agent because it hinders the nuclei from aggregation through the polar groups, which strongly absorb the copper particles on the surface with coordination bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.