Abstract

ABSTRACTModifications of alloy chemistry are often used to tailor the intrinsic flow behavior of structural materials. Models of solution strengthening, high temperature yield stress and creep must relate the effects of chemistry to the mechanisms that influence these material properties. In ordered alloys, additional information regarding the crystallographic site occupancy of ternary elements is required. In this study relaxed structures and energies for intrinsic and substitutional point defects are calculated using a first principles plane-wave-pseudopotential method. Calculated defect energies are used to predict the density and site preferences of solid-solutions (Si, Cr, Nb, Mo, Ta and W) in ³TiAl. Size and modulus misfit parameters are calculated and the interaction of these defects with a dissociated ordinary screw dislocation evaluated within anisotropic elasticity theory. The derived interaction strength is then related to solid-solution strengthening for these defect centers. Predicted solid-solution effects are in good agreement with experimental observations for the binary alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.