Abstract

The dynamic airblast, fragmentation, and soil ejecta loading environments produced by the detonation of surface-laid and shallow-buried mines are major threats to lightweight military vehicles. During the past several years, the US Army has focused considerable attention on developing improved methods for predicting the below-vehicle environment from these threats for use by vehicle/armor analysts; thereby, improving the survivability of these platforms. The US Army Engineer Research and Development Center recently completed the first year of a three-year effort to experimentally and numerically quantify the blast and fragment loading environments on vehicles due to surface and subsurface mine and IED detonations. As part of this research effort, a series of experiments was conducted to quantify the effects of soil parameters on the aboveground blast environments produced by the detonation of aboveground bottom-surface-tangent, buried top-surface-tangent, and shallow-buried 2.3-kg (5-lb) Composition C4 charges. The experiments were conducted using three different well characterized soils; 10.8% air-filled-voids (AFV) silty sand, 5.4% AFV clay, and 29.8% AFV poorly graded sand. The combined aboveground loads due to airblast and soil debris were measured by an impulse measurement device. The near-surface airblast overpressure was quantified by a series of side-on measurements above the charges at one elevation and three radial distances. This paper summarizes and compares the results of the experimental program with emphasis on defining the effect of soil parameters on the aboveground blast environment.

Highlights

  • Detonation of an explosive charge, such as a mine or an improvised explosive device (IED) at the ground surface or buried at shallow depth in soil, can produce high airblast pressures and significant dynamic soil debris loads on an overlying structure, such as a vehicle passing over the explosive

  • To address the need for these data, the US Army Engineer Research and Development Center (ERDC) recently conducted a series of research experiments to quantify the influence of soil properties on the aboveground environment from the detonation of a bare explosive charge resting on the soil surface or shallow-buried

  • In order to fully quantify the influence of soil parameters, well-controlled experiments were designed to directly measure soil debris and airblast loadings on an aboveground reaction structure due to the detonation of explosives at the surface of and shallow-buried in three very different soils

Read more

Summary

Introduction

Detonation of an explosive charge, such as a mine or an improvised explosive device (IED) at the ground surface or buried at shallow depth in soil, can produce high airblast pressures and significant dynamic soil debris loads on an overlying structure, such as a vehicle passing over the explosive. It was shown that for a constant soil type and explosive depth of burial, there is a significant increase in energy transfer to an aboveground target with increased soil moisture content This trend held true for both fine-grained and coarse-grained soils [2]. To address the need for these data, the US Army Engineer Research and Development Center (ERDC) recently conducted a series of research experiments to quantify the influence of soil properties on the aboveground environment from the detonation of a bare explosive charge resting on the soil surface or shallow-buried. In order to fully quantify the influence of soil parameters, well-controlled experiments were designed to directly measure soil debris and airblast loadings on an aboveground reaction structure due to the detonation of explosives at the surface of and shallow-buried in three very different soils. These data were analyzed to investigate the influence of the different soil types on the aboveground environment

Impulse and airblast measurement system
Experimental plan
Experimental configuration
Soil backfill materials and testbed construction
Results from experiment
Craters
IMD peak impulse
Impulse versus charge depth of burial
Comparison analysis
Summary and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.