Abstract

Many arable soils have significant horizon-specific gravel content levels. Just how these influence compaction behaviour, and in particular precompression stress as an important criterion of a soil's susceptibility to compaction, has yet to be sufficiently clarified. This article is intended to contribute towards answering this question.Firstly, three different fine earths, from the “Clay”, “Silt Loam” and “Sandy Loam” soil texture classes were mixed with staggered proportions (0, 10, 20, 30, 40% by volume) of a quartz gravel (the shape of which was subrounded to rounded, average weighted diameter 6mm). Soil core samplers were filled with the mixtures at a typical density for a natural site. In the case of the 30% by volume variant only, in addition to the quartz gravel an angular to subangular limestone gravel with the same size graduation was also used. The tests were supplemented by 20 samples from a natural site; the gravel content of these varied between 0.1 and 23.5% by volume. All of the disturbed and natural samples were adjusted to a water content at a matric potential of −6kPa. Subsequently, an oedometer test was used to apply loads to them in stages (5–550kPa). Precompression stress was calculated using the resulting stress–bulk density functions.While fine earth bulk density remained constant, the staggered addition of quartz gravel led to an increase in the whole soil density after packing, and thus also to a vertical shift in overall stress–bulk density functions. However, the stress–density functions of the fine earth do show that the overall compaction of fine earth decreased as gravel content increased. In the case of low gravel content levels of no more than 10% by volume, the increase in precompression stress (log) in the disturbed samples was, on the whole, very low. In the disturbed samples, however, as gravel content increased precompression stress (log) increased exponentially. Contrary to this, a continuous linear increase in precompression stress (log) could be observed with increasing gravel content in the natural samples. The angular to subangular shape of the gravel only resulted in greater precompression stress (log) in the “Silt Loam”.At gravel-rich sites, gravel content influences soil compaction behaviour and precompression stress very strongly. For this reason, it is essential that it be considered when assessing such sites' risk of compaction damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.