Abstract

This study was undertaken in the aim to try the limit of extraction of Zn from Zn-Ni system. The aim was realized by the addition of MoO42- ions into the galvanic bath containing Ni2+ and Zn2+ ions. Zn-Ni-Mo layers were deposited under galvanostatic conditions on (OH18N9) austenitic steel substrate. The influence of Na2MoO4 concentration in a bath on the surface morphology, chemical and phase composition and the corrosion resistance of obtained layers, was investigated. The properties of Zn-Ni-Mo layers were compared to the properties of electrolytic Zn-Ni layer. Structural investigations were performed by the X-ray diffraction (XRD) method. The surface morphology and chemical composition and surface chemical elements distribution of deposited layers were studied using a scanning electron microscope. Electrochemical corrosion resistance investigations were done by classical Stern method and electrochemical impedance spectroscopy. The potentiodynamic curves in the range of  0.05V to the potential of open circuit, were obtained. On the base of these curves the parameters like corrosion potential- Ecor, corrosion current density- icor and the polarization resistance- Rp were determined. These values served as a measure of the corrosion resistance of obtained layers. Results of impedance investigations were presented on the Nyquist Z”= f (Z’) and the Bode log Z = f (log) and  = f (log), diagrams. On the basis on this research, it was exhibited that surface morphology, chemical composition of Zn-Ni-Mo layers are dependent on Mo contents. The optimal content of Na2MoO4 in the bath for the sake of corrosion resistance in 5% NaCl, is found to be 1.2 gdm-3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call