Abstract

Motivated by a limited understanding of how valleys affect near-surface turbulence, characterizations of neutrally stable atmospheric-boundary-layer flows over isolated valleys are presented. In particular, the influence of the slopes of the three-dimensional ridges that form the idealized valleys are investigated. Flows over three distinct symmetric valley geometries were modelled in a large boundary-layer wind tunnel. For each valley geometry, the high-resolution measurements from the crests of each of the ridges and the midpoint between them are compared with an undisturbed moderately rough classed boundary-layer flow over flat terrain with homogeneous surface roughness. Flow separation originates above the crests of the first ridges of all geometries and generates recirculation zones. These are characterized by slope-dependent increases in three-dimensional near-surface turbulence when compared with the attached flows further upstream. The recirculation zones longitudinally extend to roughly half the valley width. Above the crests of the second ridges, the longitudinal velocity component decreases and turbulence intensity increases when compared with the flows above the crests of the first ridges. Results also exhibit significant increases of turbulence above the inner-valley regions of all geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.