Abstract

The stability of hafnium indium zinc oxide thin film transistors under negative bias stress with simultaneous exposure to white light was evaluated. Two different inverted staggered bottom gate devices, each with a silicon oxide and a silicon nitride passivation, were compared. The latter exhibits higher field effect mobility but inferior subthreshold swing, and undergoes more severe shifts in threshold voltage (VT) during negative bias illumination stress. The time evolution of VT fits the stretched exponential equation, which implies that hydrogen incorporation during the nitride growth has generated bulk defects within the semiconductor and/or at the semiconductor/gate dielectric interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call