Abstract
The purpose of the current study was to examine the influence of simulated masticatory loading regimes, to which all-ceramic crown or bridge restorations will routinely be subjected during their service-life, on the performance of a yttria-stabilised tetragonal zirconia polycrystalline (Y-TZP) dental ceramic. Ten sets of 30 Y-TZP ceramic discs (13 mm diameter, 1.48-1.54 mm thickness) supplied by the manufacturer were randomly selected. Six groups were loaded for 2000 cycles at 500 N (383-420 MPa), 700N (536-588 MPa) and 800 N (613-672 MPa) with three groups maintained dry and the remaining three groups loaded while immersed in water at 37+/-1 degrees C. A further two groups underwent extended simulated masticatory loading regimes at 80 N (61-67 MPa) for 10(4) and 10(5)cycles under dry conditions. The mean bi-axial flexure strengths, standard deviations and associated Weibull moduli (m) were determined. The surface hardness was also determined using the Vickers hardness indentation technique. No significant difference (P>0.05) was identified in the bi-axial flexure strength of the simulated masticatory loading regimes and the control specimens loaded dry or wet. A significant increase in m was identified for the Y-TZP specimens following loading while immersed in water (8.6+/-1.6, 8.5+/-1.6 and 10.3+/-1.9) compared with the control (7.1+/-1.3). However, the extended loading regime to 10(5)cycles resulted in a significant reduction in the m of the Y-TZP specimens (5.3+/-1.0) compared with the control. Localised areas of increased surface hardness were identified to occur directly beneath the spherical indenter. The occurrence of localised areas of increased surface hardness could be the result of either a transformation toughening mechanism or crushing and densification of the material beneath the indentor manifested as the formation of a surface layer of compressive stresses that counteracted the tensile field generated at the tip of a propagating crack which increased the Weibull modulus of the Y-TZP specimens. The reduced reliability of the Y-TZP specimens loaded to 80 N for 10(5)cycles was associated with the accumulation of subcritical damage as a result of the extended nature of loading.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.