Abstract

Do students learn better with texts that are slightly harder-to-read (i.e., disfluent)? Previous research has yielded conflicting findings. The present study identified the boundary condition that determines when disfluent texts benefit learning. We used eye-tracking to examine the joint influence of text legibility (fluent vs. disfluent) and signaling (signaling vs. non-signaling) on multimedia learning. The results revealed that both disfluent text and signaling led to better transfer test performance, and there was also an interaction between them. Specifically, the disfluent text led to better learning outcomes with or without signaling; however, in the fluent text condition, only signaling facilitated learning. Eye movement analyses indicated that signaling guided learners to pay more attention to important content in the learning materials. The current results suggest that signaling can enhance individuals’ perceived fluency or familiarity to the material and guide the attention during multimedia learning, and the positive impact of disfluency on multimedia learning seems to be more stable and ubiquitous. We discuss these under the framework of disfluency effect and attention-guiding effect.

Highlights

  • Multimedia learning refers to the presentation of words and pictures that are intended to foster learning (Mayer, 2017)

  • Because previous studies have demonstrated that the disfluency effect and signaling effect were stronger for low-experience learners than for high-experience learners, we included only low-experience students in our study

  • This research investigated the impact of perceptual fluency and signaling on the processing of multimedia learning graphics and explored the role of color signaling in multimedia learning

Read more

Summary

Introduction

Multimedia learning refers to the presentation of words and pictures that are intended to foster learning (Mayer, 2017). The words can be in spoken form (e.g., narration) or printed (e.g., on-screen text). The pictures can be static (e.g., illustrations, diagrams, or photos) or dynamic (e.g., animation or video). With the rapid development of science and technology, multimedia teaching has been disseminated widely and applied in both education and other fields. Multimedia learning materials often contain a substantial amount of information and complex elements. Unreasonable designs may lead to counterproductive effects; for example, information irrelevant to the content may distract learners and impair the learning effect (Lowe, 2003). How to correctly guide learners’ attention and make them focus on the most important content are core elements in promoting the positive effects of multimedia learning

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call