Abstract

In this paper we explore magnetic properties of Permalloy Pacman-like (PL) nanomagnets in external in-plain magnetic field. PL nanomagnets represent unique magnetic systems with broken symmetry, which are perspective as non-volatile memory elements. In these nanomagnets both bits, chirality and polarity of a single vortex state, can be easily read and written by in-plane magnetic field only. In the experimental part of this work we show that namely chirality of the∼1-μm large PL nanomagnet can be red easily by magnetic force microscopy method. The easy bit reading is enabled due to coupling of the polarity magnetization vector to the magnetic charges located at the surface of the PL missing sector. Using micromagnetic simulations we show the influence of spatial anisotropy on vortex nucleation and annihilation fields in the PL nanomagnets. Angular dependence of the vortex nucleation field is analysed in detail for PL nanomagnets of different diameter, thickness, and missing-sector dimensions. Best control of the ground state can be achieved for diameters not exceeding 100nm, thicknesses from 40 to 45nm, and for the missing sector angles from 30 to 60°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call