Abstract

Many publications have shown that semi-actively controlled dampers could significantly improve the behaviour of a road or rail vehicle. In the case of a railway vehicle, these dampers promise to solve the contradiction between the damping requirements of different running modes (fast running on a straight track vs negotiating a tight curve). It is known that semi-active control of a bogie yaw damper can improve the vehicle behaviour when running fast on a straight track, but it is not known whether such semi-active control worsens the vehicle behaviour when negotiating a tight curve. This paper investigates the application of magnetorheological bogie yaw dampers in the locomotive bogie to reduce guiding forces and wear in wheel-rail contact when the vehicle negotiates the S-curve. The paper describes the magnetorheological damper, its mathematical model and the strategies for its semi-active control, followed by the results of simulations on a complex multi-body locomotive model and on-track testing on a real vehicle. The simulations and on-track tests have shown that the use of semi-active control of the yaw dampers reduces the guiding force by about 10%. The reduction in these forces will lead to a reduction in wear in the wheel-rail contact.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.