Abstract

AbstractSea level rise presents a hazard for coastal populations, and the Mississippi Delta (MD) is a region particularly at risk due to the high rates of land subsidence. We apply a gravitationally self‐consistent model of glacial and sediment isostatic adjustment (SIA) along with a realistic sediment load reconstruction in this region for the first time to determine isostatic contributions to relative sea level (RSL) and land motion. We determine optimal model parameters (Earth rheology and ice history) using a new high‐quality compaction‐free sea level indicator database. Using the optimal model parameters, we show that SIA can lower predicted RSL in the MD area by several meters over the Holocene and so should be taken into account when modeling these data. We compare modeled contemporary rates of vertical land motion with those inferred using GPS. This comparison indicates that isostatic processes can explain the majority of the observed vertical land motion north of latitude 30.7°N, where subsidence rates average about 1 mm/yr; however, subsidence south of this latitude shows large data‐model discrepancies of greater than 3 mm/yr, indicating the importance of nonisostatic processes. This discrepancy extends to contemporary RSL change, where we find that the SIA contribution in the Delta is on the order of 10−1 mm/yr. We provide estimates of the isostatic contributions to 20th and 21st century sea level rates at Gulf Coast Permanent Service for Mean Sea Level tide gauge locations as well as vertical and horizontal land motion at GPS station locations near the MD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call