Abstract
The orbital perturbations induced by the librational motion and flexural oscillations are studied for satellites having large flexible appendages. Using a Lagrangian procedure, the equations for coupled motion are derived for a satellite having an arbitrary number of appendages in the nominal orbital plane and two flexible members normal to it. The formulation enables one to study the influence of flexibility on both the orbital and attitude motions. The orbital coordinates are expanded as perturbation series in e=(l/a 0)2,l anda 0 being a characteristic length of the satellite and unperturbed semi-major axis of the orbit, respectively. The first order perturbation equations are solved in terms of elastic deformations and librational angles using the WKBJ method in conjunction with the variation of parameter technique. Existence of secular perturbations is noted for certain librational flexural motions. Three specific examples, Alouette II, Radio Astronomy Explorer and Tethered Orbiting Interferometer, are considered subsequently and their possible secular drifts estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.