Abstract
The geometric characteristics of a saccular aneurysm play a crucial role in its rupturing. This article thoroughly investigates the impact of the sac centerline on aneurysm rupture, with a focus on identifying significant factors related to rupture at different time intervals. The study employs comprehensive computational simulations of six models of the ICA with varying coiling porosities and blood HCTs, using CFD analysis to examine WSS, OSI, pressure, and velocity within the saccular aneurysm for different sac centerlines. The results indicate that higher blood HCT levels lead to increased WSS and pressure values on the aneurysm wall, while OSI and mean velocity decrease. The study also reveals that coiling techniques can significantly reduce the risk of rupture, as decreasing coil porosity (increasing coil permeability) increases OSI and pressure while decreasing WSS and blood velocity within the aneurysm sac.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.