Abstract

Over the past few years, ruthenium has been under attention for development of organometallic drugs with various therapeutic applications. Because of its favourable characteristics, ruthenium is perfectly suitable for drug design. Ruthenium-containing complexes exert a wide range of biological effects. However, so far, the influence of ruthenium itself on vascular tone has never been studied. The effect of ruthenium was analysed through organ bath studies measuring isometric tension on mice thoracic aorta. After obtaining a stable contraction plateau, cumulative concentration-response curves of the ruthenium-compounds (RuCl3 , Ruthenium Red, [RuCl2 (CO)3 ]2 and RuCl2 (DMSO)4 ) (30-600 μmol/l) were performed. The effect of RuCl3 after contraction with different contractile agents was evaluated. Furthermore, the influence of ruthenium-containing molecules on endogenous (acetylcholine) and exogenous (sodium nitroprusside) NO-mediated relaxations was determined. All studied ruthenium compounds elicit, to some extent, a decrease of the contraction level. Looking further into the underlying mechanism, we found that RuCl3 relaxes aortic rings only when contracted with norepinephrine. This RuCl3 -induced relaxation can be prevented by the antioxidants ascorbic acid and N-acetyl L-cysteine. In addition, ruthenium compounds may diminish acetylcholine- or sodium nitroprusside-induced relaxations. Ruthenium-containing molecules can influence vascular tone induced by norepinephrine due to oxidative inactivation. Moreover, they can undermine NO-mediated responses. This should be considered when developing ruthenium-containing drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.