Abstract

The paper analyses the influence of the rotational flexibility of beam-column connection on the roof plane rigidity of the longitudinally braced frame-purlin cover of the solid wall hall. The cover is adapted to obtain thermal energy from solar radiation. The roof cover is then provided in the form of a transparent glass barrier which requires considerable roof plane rigidity. The analysis aimed to compare the roof plane rigidity of the frame-purlin cover to those of space structures and truss-purlin covers, depending on the type of longitudinal bracing and rotational rigidity of the beam-column connection. The investigations were conducted for three types of roof plane bracing and different rigidity indexes of the beam-column connection (from u=0 – pin connection, through u=0.25; 0.5; 0.75 – semi-rigid connection, to u=1 – rigid connection). In the transfer of horizontal forces, the interaction of the rigidity of frames with flexible nodes (beam-column) with longitudinal roof plane bracings supported by lateral bracings of gable walls was observed. The highest roof plane rigidity was demonstrated by 2X-shaped and K-shaped braces with rigid nodes at frame corners.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.