Abstract

There is a technical and economical need for a correction method to scale model test data, which fulfills five tasks: It should be (i) physically based, (ii) understandable and easy to apply, and (iii) universal, i.e., applicable to centrifugal as well as to axial machines of different specific speed. Moreover, the method should (iv) account for the aerodynamic quality of the machine and should (v) be reliable not only at peak efficiency, but also at off-design condition. Up to now, no method meets all five tasks. To fill that gap, a method developed at Technical University Darmstadt together with Forschungsvereinigung für Luft- und Trocknungstechnik e. V. (FLT) is introduced in this work. The method consists of three steps: Assuming the so-called master curve, scaling the efficiency itself and shifting the best efficiency point to a higher flow coefficient. For each step, a simple physical explanation is given. The validation of the method is done with test data of two axial fans with four different stagger angles and two centrifugal fans. In spite of its simplicity, the method shows a good agreement to test data compared with traditional and most recent scaling methods. A short overview about the advantages and disadvantages of compared methods and a conclusion is given at the end of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.