Abstract

Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high. Brain infarction in the middle cerebral artery basin occurs in patients with atherosclerosis. The onset of the brain infarction is facilitated by the cessation of circulation (embolism) in conditions of insufficient collateral circulation. The extent of the infarct zone is determined by neuronal death and impaired microcirculation. The development of new methods for effective targeted restorative stroke therapy is crucial for restorative treatment and reducing the risk of mortality after stroke. Remote ischemic conditioning (RIC) is an approach to limiting reperfusion injury in the ischemic region of the brain after focal ischemia. One of the most commonly used in vivo models in stroke studies is the filament model of Middle Cerebral Artery Occlusion (MCAO) in rats. In our experiment, it was performed for 30 min (J. Koizumi) with subsequent 48-hour reperfusion. Within the first 24 hours after the start of reperfusion several short episodes of ischemia in low limbs were induced. After 48 hours of reperfusion the brains were harvested and stained with TTC. Then we evaluated the effect of RIC within 24 hours ex vivo in rats’ brains, as well as syndecan-1 plasma concentration. Infarct area was assessed by means of Image-Pro program with statistical analysis. Infarct volumes in the model group (31.97% ± 2.5%) were significantly higher compared to the values in the RIC group 48 hours after ischemia-reperfusion (13.6% ± 1.3%) (*P < 0.05). A significant reduction in the area of infarction after RIC is likely due to the effect on the regulation of collateral blood flow in the ischemia area. On the second day after ischemia-reperfusion, tissue swelling was reduced in the RIC group compared to the model group. Analysis of the average concentration of Syndecan-1 revealed the difference between model and RIC groups. Syndecan-1, endothelial glycocalyx protein, might be the regulator which performs vascular control of the interaction with inflammatory cell and is responsible for mediate effect of remote ischemic conditioning on the restriction of ischemic-reperfusion injury.

Highlights

  • Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high

  • Brain infarction in the middle cerebral artery basin occurs in patients with atherosclerosis

  • The development of new methods for effective targeted restorative stroke therapy is crucial for restorative treatment after stroke and reducing the risk of mortality after ischemic stroke

Read more

Summary

Introduction

Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high. The development of new methods for effective targeted restorative stroke therapy is crucial for restorative treatment after stroke and reducing the risk of mortality after ischemic stroke. Brain infarction in the middle cerebral artery basin occurs in patients with atherosclerosis. The onset of brain infarction is facilitated by the cessation of circulation (embolism) in conditions of insufficient collateral circulation. Hemodynamic factor takes part in regulation of cerebral circulation. The mechanisms of regulation of collateral cerebral blood flow during ischemia have not been sufficiently studied [1], immediate remote ischemic conditioning (RIC) provides neuroprotection, in part, by enhancing collateral circulation, as has been shown in a mouse model of ischemic stroke [2]

Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.