Abstract

Abstract This paper examines the relationship between daily carbon emissions for California’s savanna and forest wildfires and regional meteorology over the past 18 years. For each fuel type, the associated weather [daily maximum wind, daily vapor pressure deficit (VPD), and 30-day-prior VPD] is determined for all fire days, the first day of each fire, and the day of maximum emissions of each fire at each fire location. Carbon emissions, used as a marker of wildfire existence and growth, for both savanna and forest wildfires are found to vary greatly with regional meteorology, with the relationship between emissions and meteorology varying with the amount of emissions, fire location, and fuel type. Weak emissions are associated with climatologically typical dryness and wind. For moderate emissions, increasing emissions are associated with higher VPD from increased warming and only display a weak relationship with wind speed. High emissions, which encompass ∼85% of the total emissions but only ∼4% of the fire days, are associated with strong winds and large VPDs. Using spatial meteorological composites for California subregions, we find that weak-to-moderate emissions are associated with modestly warmer-than-normal temperatures and light winds across the domain. In contrast, high emissions are associated with strong winds and substantial temperature anomalies, with colder-than-normal temperatures east of the Sierra Nevada and warmer-than-normal conditions over the coastal zone and the interior of California. Significance Statement The purpose of this work is to better understand the influence of spatially and temporally variable meteorology and spatially variable surface fuels on California’s fires. This is important because much research has focused on large climatic scales that may dilute the true influence of weather (here, high winds and dryness) on fire growth. We use a satellite-recorded fire emissions dataset to quantify daily wildfire existence and growth and to determine the relationship between regional meteorology and wildfires across varying emissions in varying fuels. The result is a novel view of the relationship between California wildfires and rapidly variable, regional meteorology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call