Abstract

Anesthetics produce unconsciousness by modulating ion channels that control neuronal excitability. Research has shown that specific GABAA receptor (GABAAR) subtypes in particular regions of the central nervous system contribute to different hyperpolarizing conductances, and behaviorally to distinct components of the anesthetized state. The expression of these receptors on the neuron cell surface, and thus the strength of inhibitory neurotransmission, is dynamically regulated by intracellular trafficking mechanisms. Pharmacologic or activity-based perturbations to these regulatory systems have been implicated in pathology of several neurological conditions, and can alter the individual response to anesthesia. Furthermore, studies are beginning to uncover how anesthetic exposure itself elicits enduring changes in subcellular physiology, including the processes that regulate ion channel trafficking. Here, we review the mechanisms that determine GABAAR surface expression, and elaborate on influences germane to anesthesia and emergence. We address known trafficking differences between the intrasynaptic receptors that mediate phasic current and the extra-synaptic receptors mediating tonic current. We also describe neurophysiologic consequences and network-level abnormalities in brain function that result from receptor trafficking aberrations. We hypothesize that the relationship between commonly used anesthetic agents and GABAAR surface expression has direct consequences on mature functioning neural networks and by extension ultimately influence the outcome of patients that undergo general anesthesia. Rational design of new anesthetics, anesthetic techniques, EEG-based monitoring strategies, or emergence treatments will need to take these effects into consideration.

Highlights

  • Anesthetics generate the most recognizable feature of general anesthesia, unconsciousness, by modulating ion channels in the central nervous system, especially the GABAA receptor (GABAAR) (Garcia et al, 2010)

  • We speculate that blockade of inflammatory signaling in the brain, either that induced by volatile anesthetics themselves and/or those induced by systemic inflammation, may protect against post-operative neurocognitive impairments partially by preventing the development of deleterious changes in GABAAR surface expression

  • The perioperative experience is an opportunity for profound dynamic changes in GABAAR expression

Read more

Summary

Introduction

Anesthetics generate the most recognizable feature of general anesthesia, unconsciousness, by modulating ion channels in the central nervous system, especially the GABAA receptor (GABAAR) (Garcia et al, 2010). The extra-synaptic receptor subtype that mediates tonic current varies the most between brain regions. The behavioral responses of transgenic mice with mutated extra-synaptic subunits suggest that disabling the receptors mediating tonic current is sufficient to abolish specific elements of anesthesia.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.