Abstract

The effect of the reactive elements (REs), Y and Zr, on oxidation of β-NiCrAl alloy at 1373 K in a gas mixture of argon with 20 vol.% oxygen at atmospheric pressure was evaluated using X-ray diffractometry, scanning electron microscopy, electron probe X-ray microanalysis and secondary ion mass spectroscopy. The oxide surfaces and interface morphologies, compositions and growth kinetics were studied for alloys with 0.32 at.% Zr and 0.24 at.% Y additions and for an undoped alloy. The oxide layer produced on the three different alloys contains mainly α-alumina and some intermediate alumina modification, Cr2O3 and RE-oxides. A needle-like morphology was seen on top of the oxide layer for the undoped and Zr alloy. Needle formation on the Y alloy was suppressed by the formation of a thin Y2O3 layer during the initial stage of oxidation. Needles were maintained to long oxidation times for the undoped alloy, but disappeared on the doped alloys indicating that some cation diffusion is possible when REs are present. Fewer intermediate alumina modifications are seen for the oxide layers on the RE alloys showing that the REs promote the formation of the α-alumina phase. Oxide layer growth occurs in two stages for all alloys. Initially, oxide growth is rapid with outward diffusion of aluminium. The second stage of oxidation is slow and is initiated by the formation of a closed α-alumina layer limiting further oxidation to inward oxygen diffusion. This stage is characterised by parabolic growth kinetics associated with a constant aluminium interface concentration. The oxide layer is thinnest for the Y alloy due the fine Y2O3 layer acting as a diffusion barrier. The oxide/alloy interface for the undoped alloy is flat and shows many voids, whereas voids are not seen for the RE alloys. This is due to the promotion of a closed α-alumina layer giving predominantly inward growth early in the oxidation process. Oxide pegs of the RE are also seen growing into the alloys. The lack of voids and the oxide pegs are advantageous for oxide layer adhesion to the doped alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call