Abstract
Simulation results are presented for thermal treatment and ignition of coal-water fuel drops under conditions of radiative-convective heating. The data demonstrate reasonbble compliance between theory and experiment for the integral parameter of ignition process — the delay time of ignition. The radiative component of heat transfer is significant for parameters and conditions of ignition. The increase in the fuel particle size makes this influence bigger. Prognostic potential was evaluated for differnet models of radiative heat tarnsfer. The delay time of ignition obtained from radiative heat transfer model “grey wall” is in good agreement with experimental data. Meanwhile, the method based on radiation diffusion approximation gives the simulation data for delay time much higher than experimental data. It is confirmed that while the process of inflammation of a coal-water particle, the key impotance belongs not to fuel-oxidizer reactions, but rather to a chain of heat treatment events, such as radiative-convective heating, water evaporation, and thermal decomposition of fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.