Abstract

The wetting behavior of grain boundaries is affected by temperature, pressure and misorientation of grain boundaries. However, the influence of quenching baths on liquid state grain boundary wetting is rarely reported. In this work, this effect in the Sn−25 at% In alloy was investigated. The Sn−In alloy was prepared by smelting of In and Sn at 300°C for 6 hr in Ar atmosphere. Samples were annealed at temperature between 130 and 165°C and quenched in two kinds of baths: −10°C salt-saturated water and liquid nitrogen. The results from X-ray diffraction show a difference in preferential orientations between samples quenched in these two baths. Metallographic analysis reveals that the percentage of grain boundaries fully wetted in samples quenched in −10°C salt-saturated water is lower than that quenched in liquid nitrogen. It is pointed out that a proper quenching bath is necessary for preserving the initial microstructure of grain boundary wetting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.