Abstract

The effect of electron blocking layer (EBL) on the performance characteristics of InGaN-based vertical cavity surface emitting lasers (VCSELs) was numerically investigated using an integrated system engineering technical computer aided design (ISE TCAD) simulation program. Simulation results indicated that the performance characteristics of InGaN quantum well VCSEL were improved by the ternary [Formula: see text] EBL. Better performance was also obtained when [Formula: see text] EBL was replaced by a polarization-matched [Formula: see text] EBL having the same energy bandgap. The quaternary EBL enhances the output power and differential quantum efficiency (DQE) as well as reduces the threshold current compared with the ternary EBL. Enhancement in the value of the optical intensity was also observed in the VCSEL structure with quaternary EBL. Furthermore, the effect of Al composition of AlInGaN EBL on the performance of InGaN-based VCSEL structure that uses the quaternary AlInGaN EBL was studied. In mole fraction was 0.115, Al mole fraction changed from 0.260 to 0.290 by step 0.005, and optimum performance was achieved in 0.275 Al mole fraction of AlInGaN EBL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.