Abstract

Summary This study determined prey consumption in common sole as a function of prey size (0–0.5, 1–1.5, 2–2.5 and 4–5 g), sediment thickness (20 cm and 2 cm) and fish size (50 g, 125 g or 300 g). Prey consumption (in numbers of prey eaten per fish per day) was reduced with increasing prey size and sediment thickness, and was increased with increasing fish size (p < .001 for all factors). All 3 factors showed significant two way interactions (p < .001) when expressed in numbers of prey eaten. Prey consumption decreased with prey size when prey could not escape by burying (2 cm of sediment thickness) irrespective of fish size. We suggest that increasing effort to ingest and handle larger prey played a role. Prey consumption increased with fish size when prey could not bury (2 cm of sediment thickness). However, when prey was able to bury (at 20 cm sediment thickness) prey consumption was similar irrespective of fish size (p < .001 for interaction fish size × sediment). This interaction suggests that with increasing fish size there is an increasing mismatch between foraging adaptation and prey burial depth. This may explain the dominance of crustaceans in the diet of adult common sole in nature, despite the high abundance of polychaetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call