Abstract

This paper reports the premolding load effect on the electrical behavior in the initial stage of electric current activated sintering of carbonyl iron powders. An electrical network model is put forward to estimate the uniformity of electric current in a powder compact subjected to different premolding loads in the initial stage. The improvement in current uniformity can be reflected from a simultaneous increase in the number N and the mass fraction θ of conductive particle chains in the compact. Both N and θ are found to follow a power law with the premolding load F for different exponent values. When θ is equal to 1, a critical load is reached, at which point the current flows through all particles during sintering. Using the results of the model and the electrical contact theory, it is also found that only an increased temperature of less than 20 K across the particle contacts. The distribution of temperature is uniform in particles. This is clearly different from the general acceptance that local high temperature is created at contact during electric current activated sintering. The neck formation and growth are thought to be mainly due to heat bonding and electromigration, of which effects on mass transport are pronouncedly enhanced by increasing the bulk temperature. Because of the poor current uniformity and relatively large power dissipation, a soft thermal breakdown is observed in the sample with high initial resistance. A reduction in premolding load may cause an increase in the initial electrical resistance of the compact. Owing to the unique voltage-current characteristic of electric current activated sintering, a higher initial resistance of compact means more thermal energy is involved, consequently producing a higher bulk temperature and getting a better quality of sintering. This also provides theoretical explanation for the experimental results from Inoue and Istomina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call